712 research outputs found

    Design description of a microprocessor based Engine Monitoring and Control unit (EMAC) for small turboshaft

    Get PDF
    Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program

    Army/NASA small turboshaft engine digital controls research program

    Get PDF
    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients

    Positivity of Spin Foam Amplitudes

    Full text link
    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e^{iS}) rather than imaginary-time (e^{-S}) path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model.Comment: 15 pages LaTeX. v3: Final version, with updated conclusions and other minor changes. To appear in Classical and Quantum Gravity. v4: corrects # of samples in Lorentzian tabl

    Spin Foam Models of Riemannian Quantum Gravity

    Full text link
    Using numerical calculations, we compare three versions of the Barrett-Crane model of 4-dimensional Riemannian quantum gravity. In the version with face and edge amplitudes as described by De Pietri, Freidel, Krasnov, and Rovelli, we show the partition function diverges very rapidly for many triangulated 4-manifolds. In the version with modified face and edge amplitudes due to Perez and Rovelli, we show the partition function converges so rapidly that the sum is dominated by spin foams where all the spins labelling faces are zero except for small, widely separated islands of higher spin. We also describe a new version which appears to have a convergent partition function without drastic spin-zero dominance. Finally, after a general discussion of how to extract physics from spin foam models, we discuss the implications of convergence or divergence of the partition function for other aspects of a spin foam model.Comment: 23 pages LaTeX; this version to appear in Classical and Quantum Gravit

    A Lorentzian Signature Model for Quantum General Relativity

    Get PDF
    We give a relativistic spin network model for quantum gravity based on the Lorentz group and its q-deformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum models for the case of the four-dimensional rotation group previously studied in gr-qc/9709028. As a technical tool, formulae for the evaluation of relativistic spin networks for the Lorentz group are developed, with some simple examples which show that the evaluation is finite in interesting cases. We conjecture that the `10J' symbol needed in our model has a finite value.Comment: 22 pages, latex, amsfonts, Xypic. Version 3: improved presentation. Version 2 is a major revision with explicit formulae included for the evaluation of relativistic spin networks and the computation of examples which have finite value

    A spin foam model for pure gauge theory coupled to quantum gravity

    Get PDF
    We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett--Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang--Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang--Mills scale.Comment: 18 pages, LaTeX, 1 figure, v2: details clarified, references adde

    On the structure of the space of generalized connections

    Full text link
    We give a modern account of the construction and structure of the space of generalized connections, an extension of the space of connections that plays a central role in loop quantum gravity.Comment: 30 pages, added references, minor changes. To appear in International Journal of Geometric Methods in Modern Physic

    Cosmological Deformation of Lorentzian Spin Foam Models

    Full text link
    We study the quantum deformation of the Barrett-Crane Lorentzian spin foam model which is conjectured to be the discretization of Lorentzian Plebanski model with positive cosmological constant and includes therefore as a particular sector quantum gravity in de-Sitter space. This spin foam model is constructed using harmonic analysis on the quantum Lorentz group. The evaluation of simple spin networks are shown to be non commutative integrals over the quantum hyperboloid defined as a pile of fuzzy spheres. We show that the introduction of the cosmological constant removes all the infrared divergences: for any fixed triangulation, the integration over the area variables is finite for a large class of normalization of the amplitude of the edges and of the faces.Comment: 37 pages, 7 figures include
    corecore